Resource translocation drives δ(13) C fractionation during recovery from disturbance in giant kelp, Macrocystis pyrifera.

نویسنده

  • Michael D Fox
چکیده

Resource allocation and translocation are fundamental physiological functions for autotrophs. The mobilization and use of resources drive population dynamics by regulating growth and recovery of individuals, but also influences ecosystem-level processes such as primary productivity and carbon cycling. This study provides the first observation of translocation-driven gradients of δ(13) C in macroalgae, a critically important phenomenon recognized in vascular plants for decades. A ~10‰ δ(13) C increase in new giant kelp (Macrocystis pyrifera) fronds relative to mature canopy blades was produced after 5 weeks following a biomass removal experiment, more than twice the variation typical for macroalgae. The observed δ(13) C patterns are consistent with tissue enrichment following resource translocation in vascular plants. The analogous source-sink relationships and consistent translocation patterns in Macrocystis and vascular plants suggest that translocation of stored resources is critical for structuring productivity and recovery from disturbance in important, habitat-forming macroalgae such as kelps and fucoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomass loss reduces growth and resource translocation in giant kelp Macrocystis pyrifera

The biomass dynamics of primary producers have important implications for the structure and function of ecosystems. Along the wave-swept coastline of central California, USA, biomass removal by wave action is a key driver in the primary productivity of giant kelp forests, yet the mechanisms of regrowth within giant kelp Macrocystis pyrifera are not well understood. To examine the physiological ...

متن کامل

Factors determining the upper limit of giant kelp, Macrocystis pyrifera Agardh, along the Monterey Peninsula, central California, USA

Abiotic and biotic factors determining the upper (shallow or nearshore) limit of giant kelp, Macrocystis pyrifera Agardh, were examined along a wave exposure gradient on the Monterey Peninsula, central California, USA. Wave modeling, analysis of aerial photographs from 1986 to 1989 and SCUBA surveys from 1993 to 1995 indicated a significant positive relationship between wave intensity and depth...

متن کامل

Role of Nutrient Fluctuations and Delayed Development in Gametophyte Reproduction by Macrocystis Pyrifera (phaeophyceae) in Southern California1

Organisms occurring in environments subject to severe disturbance and ⁄ or periods of poor environmental quality that result in severe adult mortality can survive these periods by relying on alternate life stages that delay their development in a resistant state until conditions improve. In the northeast Pacific, the forest-forming giant kelp Macrocystis pyrifera (L.) C. Agardh periodically exp...

متن کامل

Iron Uptake and Translocation by Macrocystis pyrifera.

Parameters of iron uptake have been determined for blade tissue of Macrocystis pyrifera (L.) C. Ag. These include the effects of iron concentration, light, various inhibitors, and blade type. All experiments were conducted in the defined artificial seawater Aquil. Iron uptake is light independent, energy dependent, and dependent on the reduction from Fe(3+) to Fe(2+). Iron is concentrated in th...

متن کامل

Nearshore Pelagic Microbial Community Abundance Affects Recruitment Success of Giant Kelp, Macrocystis pyrifera

Marine microbes mediate key ecological processes in kelp forest ecosystems and interact with macroalgae. Pelagic and biofilm-associated microbes interact with macroalgal propagules at multiple stages of recruitment, yet these interactions have not been described for Macrocystis pyrifera. Here we investigate the influence of microbes from coastal environments on recruitment of giant kelp, M. pyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of phycology

دوره 49 5  شماره 

صفحات  -

تاریخ انتشار 2013